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Can we catch energy loss 
in the act?

ΔE

Experimental signature of partial energy loss
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Is “medium response” actually related to energy loss?

Correlations between 
lower pT (≲4 GeV/c) 
particles
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Is “medium response” actually related to energy loss?

Away-side “shoulder”
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particles
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Is “medium response” actually related to energy loss?

Away-side “shoulder”

Correlations between 
lower pT (≲4 GeV/c) 
particles

D
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Is “medium response” actually related to energy loss?

Away-side “shoulder”

Near-side “ridge”

B. Alver, et al, (PHOBOS) Phys.Rev.Lett.104:062301,2010Correlations between 
lower pT (≲4 GeV/c) 
particles
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Parton-Medium Coupling
Another long list for the “ridge”
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Is “medium response” actually related to energy loss?

1000 event average

The canonical initial 
condition for nucleus-
nucleus collisions
      “the almond”
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Is “medium response” actually related to energy loss?

a single event

Real collisions start 
from lumpy initial 
conditions and break 
symmetry
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Takahashi, et.al.

Is “medium response” actually related to energy loss?

through NEXSPHERIO 
hydrodynamics

No parton-medium coupling required

Real collisions start 
from lumpy initial 
conditions and break 
symmetry
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Is “medium response” actually related to energy loss?

through NEXSPHERIO 
hydrodynamics

Alver & Roland, arXiv:1003.0194v1

and through AMPT

No parton-medium coupling required

Real collisions start 
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Is “medium response” actually related to energy loss?

through NEXSPHERIO 
hydrodynamics

Alver & Roland, arXiv:1003.0194v1

and through AMPT

Triangular flow ➜ Initial Conditions, Medium Properties
                       but not Energy Loss

Real collisions start 
from lumpy initial 
conditions and break 
symmetry

Open Questions: Can triangular flow explain all the data? What about even higher order terms?
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Two trivial limits of energy 
loss modifications to spectra: 
“Loss” and “Shift”
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Reality likely lies in between:
(and probably depends on pT)
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Is a flat RAA(pT) dependence really this simple?
Gyulassy, Erice, 9/5/2004
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Does RAA rise at 
large pT?



 The First Look (2 years ago) 28

)c(GeV/
T

p
0 2 4 6 8 10 12 14 16 18 20

A
A

R

0

0.1

0.2

0.3

0.4

0.5

0.6  (Au+Au 0-5% Central)0PHENIX 
 12%±Global Systematic Uncertainty 

Does RAA rise at 
large pT?

Fit requires proper 
accounting of 
correlated systematic 
uncertainties



 The First Look (2 years ago) 29

)c(GeV/
T

p
0 2 4 6 8 10 12 14 16 18 20

A
A

R

0

0.1

0.2

0.3

0.4

0.5

0.6  (Au+Au 0-5% Central)0PHENIX 
 12%±Global Systematic Uncertainty 

Does RAA rise at 
large pT?

-1m (slope) (GeV/c)
-0.005 0 0.005 0.01

b 
(in

te
rc

ep
t) 

(u
ni

tle
ss

)

0.05

0.1

0.15

0.2

0.25

1σ

Fit requires proper 
accounting of 
correlated systematic 
uncertainties



 The First Look (2 years ago) 30

)c(GeV/
T

p
0 2 4 6 8 10 12 14 16 18 20

A
A

R

0

0.1

0.2

0.3

0.4

0.5

0.6  (Au+Au 0-5% Central)0PHENIX 
 12%±Global Systematic Uncertainty 

Does RAA rise at 
large pT?

-1m (slope) (GeV/c)
-0.005 0 0.005 0.01

b 
(in

te
rc

ep
t) 

(u
ni

tle
ss

)

0.05

0.1

0.15

0.2

0.25

1σ

flat

Fit requires proper 
accounting of 
correlated systematic 
uncertainties

Data fully consistent 
with flat trend



 The First Look (2 years ago) 31

)c(GeV/
T

p
0 2 4 6 8 10 12 14 16 18 20

A
A

R

0

0.1

0.2

0.3

0.4

0.5

0.6  (Au+Au 0-5% Central)0PHENIX 
 12%±Global Systematic Uncertainty 

Does RAA rise at 
large pT?

-1m (slope) (GeV/c)
-0.005 0 0.005 0.01

b 
(in

te
rc

ep
t) 

(u
ni

tle
ss

)

0.05

0.1

0.15

0.2

0.25

1σ

flat

Fit requires proper 
accounting of 
correlated systematic 
uncertainties

Data fully consistent 
with flat trend

Consistent with constant loss and shift



 The First Look (2 years ago) 32

)c(GeV/
T

p
0 2 4 6 8 10 12 14 16 18 20

A
A

R

0

0.1

0.2

0.3

0.4

0.5

0.6  (Au+Au 0-5% Central)0PHENIX 
 12%±Global Systematic Uncertainty 

Does RAA rise at 
large pT?

Consistent with constant loss and shift
-1m (slope) (GeV/c)

-0.005 0 0.005 0.01

b 
(in

te
rc

ep
t) 

(u
ni

tle
ss

)

0.05

0.1

0.15

0.2

0.25

1σ

flat

Fit requires proper 
accounting of 
correlated systematic 
uncertainties

Data fully consistent 
with flat trend

but also small trends



 Second Look (yesterday!) 33

Does RAA rise just a 
little at large pT?
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Does RAA rise just a 
little at large pT?

Examined η meson RAA

■ Advantage: 
   Larger opening angle

■ Disadvantage:
      Smaller yield

➤ Different mix of 
     uncertainties than π0
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Does RAA rise just a 
little at large pT?
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Does RAA rise just a 
little at large pT?

Examined η meson RAA
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Does RAA rise just a 
little at large pT?

Examined η meson RAA
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Does RAA rise just a 
little at large pT?
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Important: Conditional away-side spectra are hard
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ZOWW
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reasonably well

ACHNS
Consistently falls 
below data

ASW energy loss + 
full hydro evolution 
(gives correct RAA)

Uses a simple hard 
sphere geometry

Is energy loss or medium geometry the 
crucial difference?
Any full description requires realistic: 
geometry, spectra, energy loss
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Energ
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han

ismSo how do we catch 
energy loss in the act?

Single particle

Two particle

RAA RAA(Φs), v2

IAA(Φs), v2
IAAIAA

Even
t G

eo
metr

y
4 basic high pT 
measurements 
above “medium 
response” of:
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Measurement over 
a large span of pT

Low pT
Hydro evolution

High pT
Jet quenching

Event geometry
+

path-length 
dependence

out-of-plane (75-90°)

mid-plane (30-45°)in-plane (0-15°)
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insignificant near-side trend
falling away-side trend

■ π0 triggers: 4-7 GeV/c
■ h± partners: 3-4 GeV/c

Particle selections just above 
the medium response
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Energ
y L

oss
 M

ec
han

ismSo how do we catch 
energy loss in the act?

Single particle

Two particle

RAA RAA(Φs), v2

IAA(Φs), v2
IAAIAA

Even
t G

eo
metr

y
4 basic high pT 
measurements 
above “medium 
response” of:Can we get a second witness?



 Direct Photon Correlations 61

At leading order:

Au

Au

γ h±
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At leading order:

Au

Au

γ h±

Direct γ-h:

Measured 
statistically 

Dominated 
prompt photons

Little near-side yield 
(fragmentation 
photons)



 Direct Photon Correlations 63

At leading order:

Au

Au

γ h±

Away-side γ-h:

suppression 
similar to both 
RAA and IAA

similar path as RAA

quark jet dominated

Megan Connors (PHENIX) QM09
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At leading order:

Au

Au

γ h±

Away-side γ-h:

suppression 
similar to both 
RAA and IAA

fragmentation 
function somewhat 
steeper than p+p
(only 1.3σ 
significance)

b = 6.89 ± 0.64
Ne−bzT 

b = 9.49 ± 1.37

improved experimental 
uncertainties
pin down these trends

Megan Connors (PHENIX) QM09
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Another path to parton LO information:

Au

Au

h±

Jets are not directly partons
but they are more closely connected than leading fragments
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Another path to parton LO information:

Au

Au

h±

Jets are not directly partons
but they are more closely connected than leading fragments

1

10

210

T
partonp

0 10 20 30 40 50 60 70 80 90 100

Tje
t

le
ad

in
g 

p

0

10

20

30

40

50

60

70

80

90

100
AntiKt FastJet + Pythia

R = 0.4



 Jets and Partons 67

Another path to parton LO information:

Au

Au

h±

Jets are not directly partons
but they are more closely connected than leading fragments
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Another path to parton LO information:

Au

Au

h±

Jets are not directly partons
but they are more closely connected than leading fragments
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Another path to parton LO information:

Au

Au

h±

Jets are not directly partons
but they are more closely connected than leading fragments

R = 0.4 R = 0.8

Vitev et al., arXiv:0810.2807v1 

Vitev et al., arXiv:0810.2807v1

may access the lost energy
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INT Schedule for Wednesday, June 23:
===================
 9:00: Y.S. Lai: "Reconstructed jets in PHENIX"

Au

Au

h±

Methodology:

Gaussian filter

Better weighted to jet 
signal than a cone 
algorithm

Less influenced by non-
jet particles



 Jet Reconstruction 71

INT Schedule for Wednesday, June 23:
===================
 9:00: Y.S. Lai: "Reconstructed jets in PHENIX"

Au

Au

h±

Methodology:

Gaussian filter

Better weighted to jet 
signal than a cone 
algorithm

Less influenced by non-
jet particles

2D (pparticle,pjet) Unfolding

Simultaneous extraction of
spectra and fragmentation funcs

Requires careful examination of 
systematics
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INT Schedule for Wednesday, June 23:
===================
 9:00: Y.S. Lai: "Reconstructed jets in PHENIX"

Au

Au

h±

Methodology:

Gaussian filter

Better weighted to jet 
signal than a cone 
algorithm

Less influenced by non-
jet particles

2D (pparticle,pjet) Unfolding

Fake rejection for heavy ion 
backgrounds

Gaussian shape cut on 
momentum distribution in filter 
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INT Schedule for Wednesday, June 23:
===================
 9:00: Y.S. Lai: "Reconstructed jets in PHENIX"

Au

Au

h±

p+p consistent with 
NLO and PYHIA
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INT Schedule for Wednesday, June 23:
===================
 9:00: Y.S. Lai: "Reconstructed jets in PHENIX"

Au

Au

h±

RAA roughly consistent 
with single particles

Also consistent with flat
dependence in pT
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Step #1:   Remove the outer PHENIX Central Arms
Step #2:   Replace Axial Field Magnet with Solenoid
                (2 Tesla with inner radius = 70 cm).
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Step #1:   Remove the outer PHENIX Central Arms
Step #2:   Replace Axial Field Magnet with Solenoid
                (2 Tesla with inner radius = 70 cm).
Step #3:   New silicon tracking layers at 40 and 60 cm
Step #4:   Compact EmCal (Silicon/Tungsten) |η|<1.0
'             8 cm total depth and preshower layer
Step #5:   Hadronic Calorimeter Outside Magnet
Step #6:   Maintain high DAQ bandwidth and triggers
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π0 out to 38 GeV/c
Central collisions:

π0
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π0 out to 38 GeV/c
Central collisions:

Direct photons out to 46 GeV/c π0 γ
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π0 out to 38 GeV/c
Central collisions:

Direct photons out to 46 GeV/c

Jets out to 70 GeV/c

π0

Jets

γ
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π0 out to 38 GeV/c
Central collisions:

Direct photons out to 46 GeV/c

Jets out to 70 GeV/c

Charm (beauty) jets 42(45) GeV/c

π0

Jets

γ

c

b
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With tracking, dominated by “fakes” above some pT (here pT > 
10 GeV). Thus, low overall efficiency for true high energy jets.  
Bias in spectra reconstruction when FF is uncertain.  
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With tracking, dominated by “fakes” above some pT (here pT > 
10 GeV). Thus, low overall efficiency for true high energy jets.  
Bias in spectra reconstruction when FF is uncertain.  
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Issue largely solved with EMCal + HCal for jet energy!
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 Summary 85

Triangular flow is a promising explanation for “ridge” and 
“shoulder” phenomena

Definitive only when full quantitative reproduction of the data 
(eliminate the possibility of some degree of medium 
response)

RAA, IAA, RAA(Φs), IAA(Φs) provide a basic but useful set of 
observables from testing theory

Additional observations will give us more information
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=325 is 0-10% cent. (partly overlapping)part=351 is 0-5% cent. and NpartN

Energy loss:

■ large suppression = opaque medium

■ found by many models, but these differ on 
characteristics of fast parton interactions:
◆ few large interactions, GLV, AMY
◆ many small interactions, BDMPS

...but also on path length dependence
◆ ΔE ~ L2 (weak coupling, BDMPS-Z)
◆ ΔE ~ L3 (strong coupling, AdS/CFT)

Bass, et al., PRC79, 024901 

Comparison to 
PHENIX data
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Event Characterization

■ Vertex, Centrality, Reaction Plane
(BBC, ZDC, RXPN)

Single Particle Reconstruction

■ Charged Particle Tracking
(DC, PC1, PC3, RICH)

■ Photon and π0 Reconstruction
(PbSc, PbGl, PC3)

h±

π0

γ
γ
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δp/p ≈ 0.7%⊗ 0.1%p

Challenging high multiplicity environments

Track resolution

low pT - multiple scattering
high pT - angular resolution

High momentum background

■ fine DC spacial resolution

■ fine momentum resolution

150µm

■ large field integral

Drift Chamber:
■ north-south division
■ two X-layers (phi-separation)
■ two UV-layers (z-separation)

dNC/dy � 700

PC1:
■ small pads, ~8 mm 
■ better z-separation

■ photon conversion
■ post-field decay
■ albedo

Extend matching 
requirement in PC3

e+e-

1.15 Tesla-meters

pT > 5 GeV/c

~1% at 7 GeV/c
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 System and Energy Scan 93
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Away-side structure vs. 
beam species, beam 
energies, and centrality

All cases:
● Peripheral similar to p-p

● Central shows 
development of shoulder 
structure in all cases

Central Peripheral
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■ Common trend with 
   system size
■ Transition region 
   between 0 and 100 Npart
■ Shape saturates 
   above 100 Npart
■ No observed 
   energy dependence 
   at RHIC

increasing system size

gaussian kurtosis = 3

D
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■ Away-side shoulder and near-side
   enhancement is seen in all intermediate pT 
   correlations

■ Normal, but suppressed, away-side at 
   high pT

■ Position of intermediate pT 
   away-side relatively insensitive 
   to trigger and partner selection
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 Ridge and Shoulder - Centrality 97

■ Away-side
   shoulder and
   near-side ridge
   share a common  
   centrality
   dependence

■ Scale similarity
   here is largely a
   factor of pT

    selection



 Ridge and Shoulder - Spectrum 98

■ Near-side ridge and
   away-side shoulder are
   both softer than p-p   
   counterparts

■ Near-side ridge is
   possibly harder
   than away-side shoulder

■ Away-side shoulder is
   closest to inclusive
   hadron slope

Also:
■ Ridge and shoulder have
   more bulk-like particle ratios 
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Bass, et al., PRC79, 024901 
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Measuring Elliptic Flow, v2

Fit:

Mean Projection:

Rx-pn  Track
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Measuring Reaction-Plane Resolution, Δ

Ollitrault-Voloshin:

Mean Projection:

Rx-pn  Rx-pn



 ZYAM Statistical Uncertainty 102

Simulation Simulation

σb0

Bin Methods typically use 
statistical error of points 
(not a real estimate)

Proper Error Calculation:
- Toss new C(Δφ) against measurement(fit)
- Fit new C(Δφ) (fit method only)
- Extract b0, & repeat

Scatter of b0 in tossed C(Δφ)s is the estimation
of statistical error

 

Donʼt trust ZYAM 
yields without this

error bar!



 ZYAM Systematic Uncertainty 103

Simulation

Simulation

Simulation

Simulation

Binned ZYAMs deviate significantly from true value at low sampling rates
Fit method deviates most slowly (no effort to recover failed fits made here)
These jet shapes show only minor effects on

ZYAM applied at sufficiently low statistics requires an additional systematic!
(this is usually not never done)



 High π0-h± by Reaction Plane Analysis 104



 Pair Analysis with Reaction Plane 105

Two source model is now:

and rxpn-binning requires:

high order



 Jet Functions - Full Set @ 4-5 GeV/c 106

most
in-plane

most
out-of-plane



 Jet Functions - Full Set @ 3-4 GeV/c 107

most
in-plane

most
out-of-plane


